Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Galaxies like the Milky Way are surrounded by complex populations of satellites at all stages of tidal disruption. In this paper, we present a dynamical study of the disrupting satellite galaxies in the Auriga simulations that are orbiting 28 distinct Milky Way-mass hosts across three resolutions. We find that the satellite galaxy populations are highly disrupted. The majority of satellites that remain fully intact at present day were accreted recently without experiencing more than one pericentre ($$n_{\rm peri} \lesssim 1$$) and have large apocentres ($$r_{\rm apo} \gtrsim 200 \mathrm{\, kpc}$$) and pericentres ($$r_{\rm peri} \gtrsim 50 \mathrm{\, kpc}$$). The remaining satellites have experienced significant tidal disruption and, given full knowledge of the system, would be classified as stellar streams. We find stellar streams in Auriga across the range of pericentres and apocentres of the known Milky Way dwarf galaxy streams and, interestingly, overlapping significantly with the Milky Way intact satellite population. We find no significant change in satellite orbital distributions across resolution. However, we do see substantial halo-to-halo variance of $$(r_\text{peri}, r_\text{apo})$$ distributions across host galaxies, as well as a dependence of satellite orbits on host halo mass–systems disrupt at larger pericentres and apocentres in more massive hosts. Our results suggest that either cosmological simulations (including, but not limited to, Auriga) are disrupting satellites far too readily, or that the Milky Way’s satellites are more disrupted than current imaging surveys have revealed. Future observing facilities and careful mock observations of these systems will be key to revealing the nature of this apparent discrepancy.more » « less
-
Abstract We study the evolution of the bar fraction in disk galaxies between 0.5 < z < 4.0 using multiband colored images from JWST Cosmic Evolution Early Release Science Survey (CEERS). These images were classified by citizen scientists in a new phase of the Galaxy Zoo (GZ) project called GZ CEERS. Citizen scientists were asked whether a strong or weak bar was visible in the host galaxy. After considering multiple corrections for observational biases, we find that the bar fraction decreases with redshift in our volume-limited sample (n= 398); from % at 0.5 <z< 1.0 to % at 3.0 < z < 4.0. However, we argue it is appropriate to interpret these fractions as lower limits. Disentangling real changes in the bar fraction from detection biases remains challenging. Nevertheless, we find a significant number of bars up toz= 2.5. This implies that disks are dynamically cool or baryon dominated, enabling them to host bars. This also suggests that bar-driven secular evolution likely plays an important role at higher redshifts. When we distinguish between strong and weak bars, we find that the weak bar fraction decreases with increasing redshift. In contrast, the strong bar fraction is constant between 0.5 <z< 2.5. This implies that the strong bars found in this work are robust long-lived structures, unless the rate of bar destruction is similar to the rate of bar formation. Finally, our results are consistent with disk instabilities being the dominant mode of bar formation at lower redshifts, while bar formation through interactions and mergers is more common at higher redshifts.more » « lessFree, publicly-accessible full text available June 30, 2026
-
ABSTRACT We apply the barred Schwarzschild method developed by Tahmasebzadeh et al. (2022) to a barred S0 galaxy, NGC 4371, observed by IFU instruments from the TIMER and ATLAS3D projects. We construct the gravitational potential by combining a fixed black hole mass, a spherical dark matter halo, and stellar mass distribution deprojected from 3.6 μm S$^4$G image considering an axisymmetric disc and a triaxial bar. We independently modelled kinematic data from TIMER and ATLAS3D. Both models fit the data remarkably well. We find a consistent bar pattern speed from the two sets of models with $$\Omega _{\rm p} = 23.6 \pm 2.8 \, \mathrm{km \, s^{-1} \, kpc^{-1} }$$ and $$\Omega _{\rm p} = 22.4 \pm 3.5 \, \mathrm{km \, s^{-1} \, kpc^{-1} }$$, respectively. The dimensionless bar rotation parameter is determined to be $$\mathcal {R} \equiv R_{\rm cor}/R_{\rm bar}=1.88 \pm 0.37$$, indicating a likely slow bar in NGC 4371. Additionally, our model predicts a high amount of dark matter within the bar region ($$M_{\rm DM}/ M_{\rm total}$$\sim 0.51 \pm 0.06$$), which, aligned with the predictions of cosmological simulations, indicates that fast bars are generally found in baryon-dominated discs. Based on the best-fitting model, we further decompose the galaxy into multiple 3D orbital structures, including a BP/X bar, a classical bulge, a nuclear disc, and a main disc. The BP/X bar is not perfectly included in the input 3D density model, but BP/X-supporting orbits are picked through the fitting to the kinematic data. This is the first time a real barred galaxy has been modelled utilizing the Schwarzschild method including a 3D bar.more » « less
-
ABSTRACT Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $$\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $$\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.more » « less
-
ABSTRACT We report evidence from APOGEE for the presence of a new metal-poor stellar structure located within ∼4 kpc of the Galactic Centre. Characterized by a chemical composition resembling those of low-mass satellites of the Milky Way, this new inner Galaxy structure (IGS) seems to be chemically and dynamically detached from more metal-rich populations in the inner Galaxy. We conjecture that this structure is associated with an accretion event that likely occurred in the early life of the Milky Way. Comparing the mean elemental abundances of this structure with predictions from cosmological numerical simulations, we estimate that the progenitor system had a stellar mass of ∼5 × 108 M⊙, or approximately twice the mass of the recently discovered Gaia-Enceladus/Sausage system. We find that the accreted:in situ ratio within our metal-poor ([Fe/H] < –0.8) bulge sample is somewhere between 1:3 and 1:2, confirming predictions of cosmological numerical simulations by various groups.more » « less
An official website of the United States government
